ResearchGate

See discussions, stats, and author profiles for this publication at:

Ranked Time Series Matching by Interleaving
Similarity Distances

Conference Paper - December 2017

DOI: 10.1109/BigData.2017.8258343

CITATIONS

0

3 authors, including:

% Worcester Polytechnic Institute

2 PUBLICATIONS O CITATIONS

SEE PROFILE

READS

35

l
m Worcester Polytechnic Institute

12 PUBLICATIONS 8 CITATIONS

SEE PROFILE

All content following this page was uploaded by on 12 December 2017.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/321757274_Ranked_Time_Series_Matching_by_Interleaving_Similarity_Distances?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321757274_Ranked_Time_Series_Matching_by_Interleaving_Similarity_Distances?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cuong_Nguyen146?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cuong_Nguyen146?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Worcester_Polytechnic_Institute?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cuong_Nguyen146?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodica_Neamtu?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodica_Neamtu?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Worcester_Polytechnic_Institute?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodica_Neamtu?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodica_Neamtu?enrichId=rgreq-c993f361ea5aeda2faf9e7f1360744a1-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc1NzI3NDtBUzo1NzA4MjQ5ODU5MzU4NzJAMTUxMzEwNjY5MDMzOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Ranked Time Series Matching by Interleaving
Similarity Distances

Cuong Nguyen
Worcester Polytechnic Institute
ctnguyendinh@wpi.edu

Abstract—Similarity analytics of time series data are critical
for a wide range of applications ranging from medical to
financial, and from weather forecasting to image processing. Yet
these analytics tasks are known to be prohibitively expensive for
large data sets, especially when accounting for varying temporal
alignments and lengths. Our proposed framework tackles this
challenge by adopting a preprocess-once and query-many-times
paradigm. We extend a previous formal model interleaving the
inexpensive Euclidean distance with the robust Dynamic Time
Warping (DTW) to retrieve the £ most similar matches to a
given sample sequence. Our extended ONline EXploration of top
k time series similarity system (K-ONEX) first encodes similarity
relationships by compressing the raw time series into Euclidean-
based groups; these groups are further explored using the elastic
DTW to find similar sequences of any length and temporal
alignment with response times that are almost as fast as retrieving
only one best match. Our empirical results illustrate that K-
ONEX provides response times that are 2-3 orders of magnitude
faster than the benchmark and state-of-the-art methods while
achieving 100% accuracy by exploring less than 0.5% of the
sequences in each dataset.

Index Terms—subsequence matching, data mining, time series
analytics, k-similarity search, dynamic time warping, visualiza-
tion of time series similarity.

I. INTRODUCTION

The monitoring of stock trends, weather, and medical his-
tory through various sensors has led to a dramatic increase in
the availability of large-scale collections of time series. Mining
this staggering amount of data is a daunting task, especially
when trying to reveal insights beyond the traditional retrieval
of a single best match to a given sample. For example, a
financial analyst might be interested in finding stocks with
similar historical price trends to avoid constructing portfolios
that are not diverse; or a neurologist might determine abnormal
brain activity by comparing brain signals of a patient to similar
time series in a massive electroencephalogram database [1].
Thus, many techniques have been proposed to find the best
match or groups of sequences similar to a given sample [2],
[3], [4], [5]. Complex data mining tasks require the use of
elastic alignment tools such as dynamic time warping (DTW)
[6], whose robustness enables the comparison of sequences
with different lengths and those that are not aligned in time.
This “elasticity” comes with a quadratic complexity [6] which
is compounded by the fact that DTW is not a metric, and as
such there is no proven triangle inequality to help mitigate the
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cost of using it over large datasets. Many research efforts have
been dedicated to improving the scalability of DTW; however,
most of them focused on finding a single best match to a given
sample. Potential extensions to finding more than one match
are difficult to achieve without forgoing much of the efficiency
advantage of the proposed techniques [5], [7], [8].

Motivating examples

We show in the following examples that finding multiple
similar matches for a given sample sequence is beneficial and
necessary for analysts to better understand their datasets.

1) The best match is not always the most reasonable
answer. It has been shown that DTW can produce pathological
results through paths that yield minimum distance but do
not have much practical meaning [9]. Although constraints
such as the Sakoe-Chiba band [10] can help, they require
an iterative process of adjusting parameters and rerunning the
entire search. In many cases, a better match might be found by
just retrieving more similar sequences. As illustrated in Fig. 1,
on the left side, the sequence represented by the solid red line
(denoted as “lIst best match™) is retrieved as the best match
of the sample query (blue dashed line) due to a pathological
warping path (marked by the arrow). However, we show on
the right side of the same figure that the second match (solid
red line, denoted as “2nd best match”) is a “more reasonable”
match, because it better captures the shape similarity, despite
having a higher distance to the sample than the first match.

DTW distance = 0.50 DTW distance = 0.57
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Fig. 1. The first best match has a smaller DTW due to over-warping at the
right end point of the path, pointed by the arrow. The second best match is
a more reasonable answer capturing the shape similarity despite the higher
DTW between this match and the sample.

2) The best match is not always the most interesting
answer. Sometimes the best match can be too trivial to be
useful. For example, the stock price of a subsidiary company
is likely to follow the trend of the stock price of its holding



company. Thus, finding only the best match in this case
would not provide meaningful additional information. Instead,
retrieving several similar sequences would enable a domain
expert to gain better insights by incorporating their domain
knowledge to ignore trivial results and analyze the more
interesting ones. As shown in Fig. 2, the sample (blue line) is
very similar in a trivial manner to the sequences (dashed red
lines) in the top two and bottom left sub-figures and having
the three lowest distances (DTW); the fourth match illustrated
in the bottom right sub-figure provides better insights, despite
having a higher similarity distance to the sample.

DTW distance = 0.38 DTW distance = 0.45
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Fig. 2. The first three best matches are trivial and overlap the query
almost completely; furthermore, the values in the third best match happen
to be identical to the values of the second best match, although they are
different sequences altogether. The fourth best match potentially provides
more information by capturing the time misalignment and shape similarity.

3) Taking advantage of the existing intermediate com-
putation to retrieve many similar sequences for almost
no extra computational expense. Searching for similar time
series involves exploring the dataset by performing all pairwise
similarity comparisons between sequences, due to the non-
metric nature of DTW. The quadratic complexity of DTW
leads to very high computational expenses, which are only
used to retrieve one single match [4], [5]. Reusing the existing
computation to retrieve many similar matches to a given
sequences would be beneficial by giving analysts a better
understanding of their data at much-reduced cost.

Research Challenges and State-of-the-Art Limitations.

Finding the k-most-similar sequences to a given sample
in large time series datasets is a daunting task, especially
when accounting for sequences with various temporal
alignments and lengths. The mathematical complexity of
exploring a dataset containing [N time series, each of length
I, is O(NI?). Performing similarity comparisons using robust
alignment tools such as DTW whose complexity is quadratic
for all these subsequences in real-world datasets' is not
practical as the cardinality of data increases.

The state-of-the-art has been trying to address the com-
promise between the choice of similarity distance and time
responsiveness. Many systems speed up their response time by

Thttps://followthedata.wordpress.com/2014/06/24/data-size-estimates/

relying on inexpensive-to-compute distances such as Euclidean
[8], [11], but they cannot handle sequences of different lengths
and alignments. The alternative, the use of robust alignment
tools such as DTW, is generally overshadowed by the fact
that its computational complexity [6] leads to decreased re-
sponsiveness and poor scaling. Thus, researchers have to make
a difficult choice between the ability to perform meaningful
comparisons and the increased response times.

Retrieving k-most-similar sequences. As shown in our
previous examples, getting insights into datasets often in-
volves not just finding one best match for a sequence, but
also discovering other similar sequences. Most state-of-the-art
systems focus on finding the best match [5], [8] and cannot be
easily extended to find many sequences without dramatically
increasing the computational expenses and response times.
Analysts would benefit from the ability to retrieve as many
similar sequences as needed to better understand their data.

Our Approach.

The cornerstone of our work is the exploration of a com-
pacted dataset by using the robust DTW (Sec. II-A) only when
absolutely needed. The quality of our results of exploring
“similarity groups” constructed with the inexpensive Euclidean
Distance (ED) is guaranteed by our theoretical framework and
further illustrated by our experimental results. Our mining
strategy based on “extending” similarity properties to many
groups allows us to retrieve any desired number of similar
time series within almost the same time as retrieving only one
single best match to a given sample query.

Contributions.

1) We formally prove a modified triangle inequality be-
tween ED and DTW that extends the DTW-based ex-
ploration from one to many ED-based groups to find
the desired number of similar sequences. (Sec. III)

2) We devise an efficient strategy for fast k-similarity
search, powered by indexing the group representatives
and further optimized by early pruning and efficient
traversal strategies. (Sec. IV)

3) We conduct experiments on eight benchmark datasets
from the UCR archive [12] to show that our K-ONEX
is 100% accurate and 2-3 orders of magnitude faster than
the benchmark and state of the art methods. (Sec. V-B)

4) Our precomputed similarity relationships between sub-
sequences preserved in our “similarity groups” give the
analysts a “similarity-centric panorama” of the dataset.
Being able to visualize this panorama by showing the
distribution of similar sequences enables analysts to
better understand their data. (Sec. V-B)

5) Our case study using a medical dataset shows how our
method could help medical staff identify heart condi-
tions. (Sec. V-C)

II. GENERAL SIMILARITY CONCEPTS.

A. Dynamic Time Warping Overview

Dynamic Time Warping (DTW) between two time series
X and Y aligns these sequences according to their shapes



rather than the ordering of their values. Suppose we have two
time series X = (21,%2,...,2,) and Y = (y1,¥2, -+, Ym)-
To align them using DTW, an n X m matrix M(X,Y) is
constructed, where the (7, 7)*" element of the matrix is the Eu-
clidean Distance between z; and y;, i.e., w; ; = ED(z;,y;).
Then a warping path P, a set of elements that forms a path
in the matrix from (1,1) to (n,m), is found. The ¢** element
of P denoted by p; = (i, ;) refers to the indices iy, j; of
(xi,,y,) of this matrix element in the path. Thus, a path P
is P = (p1,p2,---,Pty...,0r), where n < T < 2n — 1,
p1=(1,1) and pr = (n,m).
Definition 1: Warping Path Weight: Given two time series
X = (z1,...,y) and Y = (y1, ..., Ym ), the weight of the
warping path P is defined as:

T
2w 1)
t=1
The DTW distance is the weight of the path with mini-
mum weight: DTW (X,Y) = minp(w(P)).
More details about the properties and dynamic programming
strategy for computing this path can be found in [6], [13].

B. Online Similarity Exploration.

We now define some general concepts used in our theoret-
ical framework for exploring time series similarity.
A time series X of length n denoted by X = (1, z2, ..
is an ordered set of n real values.
A dataset D = { X1, X5,..., Xy} is an ordered collection of
N such time series.
Definition 2: The subsequence of a time series which is
denoted by (Xz)l7 is a time series X; of length [ starting
atpositionjwhére 1</<nand1<j<n—I+1and
1 is the identifier of the time series.
Similar to [13], we define normalized distances in order to
establish our theoretical foundation of time-warped retrieval.
Definition 3: Given two sequences X = (1,%2,...,%n)
and Y = (y1,¥y2,...,Yn) we define their normalized
Euclidean Distance as

- Tp)

—  EDX,)Y
pp - EPLY) @)
vn
Definition 4: Given two sequences X = (21,Z2,...,Zn)

and Y = (y1,92,...
DTW as

,Yn) we define their normalized

DT — DTW (X, Y). 3)
2n
We consider two sequences to be similar if their pairwise
distance is within a given similarity threshold, denoted by ST'.
Definition 5: Two time series X and Y are similar if the
chosen distance such as ED or DTW between them is
within a given similarity threshold ST, or Dist(X,Y) <
ST where Dist € {ED, DTW} and ST can be any value
between 0 and 1.

Similar to [13], we group subsequences of the same length
that are similar according to Def. 5 using the inexpensive ED
distance into “similarity groups” and summarize each of these

groups by their representative.

Definition 6: Given the set T of all possible subsequences
(Xi)é of the N time series of dataset D, assume these
subsequences (X,)é € T are grouped into groups with

their respective representatives RL, such that all subse-

quences (X;)! € T are in one and only one group Gj.

These groups are defined to be similarity groups, denoted

by Gﬁc, if the following three properties hold:

1) All subsequences (X))
same length .

2) ED between any (Xl)é in G and the representa-
tive R} of this group G is smaller than half of the
similarity threshold ST used by the system, that is
ED((X,)%, R},)) < ST/2,Vi € [1,N],Vl € [1,n],Vj €
[1,n—1+1].

3) ED between the subsequence (Xz)é and the represen-
tative R. of the group G is the smallest compared to
ED of (Xl)é and all other representatives R; of the
same length [ defined over D, or ED((X;)}, Ry})) <
ED((X;)%,RL)),Vi € [1,N],Vl € [1,n],Vj € [1,n —
I+ 1),¥p € [1,g], where g denotes the number of
representatives of length [.

in a group G! must have the

III. THEORETICAL FOUNDATION FOR K-SIMILARITY
SEARCH INTERLEAVING ED AND DTW.

We describe here the theoretical foundation for our strategy
to retrieve k similar sequences by interleaving ED and DTW.
The ONEX theoretical foundation [13] established a triangle
inequality between ED and DTW applied to the sequences
in a specific similarity group, its representative and any given
sample query. This inequality guarantees that the DTW
between a sample query ) and any sequence X in a group
G, as in Def. (6) is smaller than ST if DTW (R, Q) < 2L,
where R is the representative of that group.

We now extend this property to all the similarity groups
whose representatives have pairwise DT'W with () close to the
similarity threshold S7". This allows us to guarantee the results
of exploring many qualifying groups together to retrieve any
desired number of sequences similar to a given query sample,
instead of exploring the entire dataset.

Lemma 1: Extended Triangle Inequality Based on In-
terleaving ED and DTW. Given X = (x1,29,...,2,) an
arbitrary sequence of length n in any group as per Def. (6),
with the representative of a group R = (ry,r2,...,7,) and
a sample sequence Q@ = (q1,42,---,Gm), then the following
is true: if ED(X,R) < ST/2, DTW(R,Q) < d, then
DTW(X,Q) < d+ST/2, where d is the value of the distance
between R and Q).

This Lemma allows us, based on the value of d, to guarantee
the results of exploring more than one of our similarity group
using DTW. According to Def. 6, the similarity groups satisfy
the first condition of the Lemma. Thus, we now want to
establish the values of d for which the similarity between X
and a sample query (@ is guaranteed, or the values for which
DTW (R, Q) is close to ST.

Proof for sequences of the same length.

Given the assumptions of the Lemma when m = n, we have




ST

ED(X.R) <~ @& DIW(R,Q)<d. (5

We want to find the values of d for which the following is
true:

DIW(X,Q) < d+ S—ZT (6)

Expanding Eq. (4) as per the definition of ED and ED we get

ST
ED(X,R) ;:1(7"1 x;)° <+/n 5
Squaring this we get:
- ST?
2 2
= . — - < _
ED*(X,R) § (ri—z;)°<n 1 @)

=1

We define matrices M (Q, R) and M(Q,X) as in Sec. IL
Given the assumptions related to this case we know that
there is a warping path P in M(Q, R) from (1,1) to (n,n)
with the DTW weight at most d. We now have to show that
there is a warping path from (1,1) to (n,n) in M(Q,X)
with weight at most d + % In fact we show that the same
warping path P from M(Q, R) is satisfactory. Let P be
P = (p1,p2,---sPty--. 1), Where n < T < 2n — 1,
b1 = (1’ 1)’ br = (n,n), bt = (it’jt)'

From Def. (4) and the assumptions of the Lemma we know:
T
> (i, —7j,)% < 2nd. (8)

t=1

Squaring this, we get:

T

Y (i, —r5)° < 4nd®. ©)
t=1

Based on Def. (4), we can also re-write Eq. (6) as

T )2
DTW(X,Q) = \/Z’:l(;: 2

L),

A\

(10)

By distributing the denominator and squaring Eq. (10), we
now want to prove the following inequality:

T
St — a5 < 4023 v a2

t=1

Y

We derive a direct expansion of a single term within the
summation from Eq. (11), where the step of path ¢ is arbitrary
(and thus elided).

z;). (12)

G —wj=q—rj+tr—z;=(a—r)+ (-

Using the Cauchy-Schwarz inequality [14], we get:

(@i —25)* < 2(qi = 75)* +2(rj — ;).

Then using this and (9), we get:
T T

T
Z(qlt - xjt)Q < 2Z(qh - rjt)Q + 2Z(Tjt - xjt)2

t=1 t=1 t=1

T
<2 x4n?d? +2 Z(rjt — ;)%

= (13)
We estimate the second term as ., (r; — z;)? with some
terms repeated. The total number of repetitions is at most n,
since the length of the warping path is at most 2n. Each fixed
term is repeated at most n — 1 times. Thus from Equations (7)
and (13), we have:

T n
S (@i, —25)? <802 42 (r -2, (14)
t=1 =1
2n2ST?
< 8n2d? + = - (15)
ST 2
< 8n?d* + 2n2(7) . (16)

We now show that the right hand side of Eq. (16) is condi-
tionally less than the right hand side of Eq. (11) for specific
values of d.

ST 2 ST

8n?d? + 2n2(7) < 4n2(7 + d)?
4d* + (‘%T)2 <2(ST? + 2d(57T) + d?)
0< (S—QT)2 - 4d(57T) — 24d?
0< (STT)2 + 4d(S7T) + 4d? — 64>

6d* < (%T +2d)*> = d<(1.11)ST.
Discussion.

The important result of this Lemma shown in the last equation
is that for d smaller than 1.11S57, the similarity between
a sample sequence and the representative of a group can
be extended to all sequences in that specific group, as well
as any other “qualifying groups”, i.e. for which the above
condition holds. The practical implication of this result is
that we can safely explore not only the similarity groups as
defined in [13], but also the ones that are slightly above the
similarity threshold and still guarantee 100% accurate results.
This will play a key role in retrieving any desired number of
similar sequences within almost the same time as retrieving
one single best match.

Note on the Proof of sequences with the different lengths.
The DTW defined in Def. 4 also applies for to the scenario
when sequences X and Y have different lengths, respectively
m and n. Without loss of generality we consider here the
case of m < n but the proof is very similar for n < m.
The division by 2n is indeed due to the warping path having
length up to m + n < 2n. Then the matrix M (X,Y) is an
m X n matrix and the warping path connects (1, 1) to (m,n).
Other than this, the proof for sequences of different lengths




and the proof for sequences of the same length are the same,
and we arrive at the same inequality.

IV. EFFICIENT STRATEGY FOR RETRIEVING K-SIMILAR
SEQUENCES

We aim to retrieve any desired number k of similar time
series in a dataset with a response time that is not much higher
than just retrieving one single best match.

Definition 7: We denote k. > k as the minimum number of
sequences that we need to explore in the dataset to guarantee
our results.

The top k similar sequences retrieved are a subset of these
k. sequences.

A. Strategy for retrieving K-most-similar sequences.

The K-ONEX strategy for retrieving k-most-similar se-
quences to a given sample () involves a two-step process:
(1) we first find the groups whose representatives have the
smallest DT'W to @ and have at least k. members combined;
(2) then we compute the pairwise DT'W distances of at least
ke sequences to the sample () and return the top k£ sequences
with the smallest DT'W distances to ().

We first create a length-based index L where L; is a list
of representatives of length [, namely Ré, and we use it to
retrieve the groups of each specific length. The construction
methodology for the length-based groups is the same as in
[13]. It has been shown [15] that in general the best match to
a given sample is highly likely to be of the same or close length
to that of the sample. Thus, we start our exploration with the
representatives having the same length as the sample ) and
continue by alternatively exploring those of next smaller and
larger lengths. As we compute DT'W between () and each
of the representatives, we place the corresponding groups in
a max-heap H such that the group with the representative
furthest away from () is always at the root of H. The total
number of sequences contained in the existing selected groups
in H exceed k., or ), |H;| exceeds k. where |H;| is number
of members in group R;. Naturally, this condition is not
satisfied while the heap is being initially filled. We only insert
a new group if the distance from its representative to @) is
smaller than that of the representative of the group at the
root, denoted as d*. We use the LBgcoqn lower bound and
early-abandoning technique [5] to quickly prune unqualified
representatives. After each insertion of a new representative,
we maintain a minimally sufficient number of groups in H by
continuously popping the root of H until the next pop action
results in ), |H;| less than k.. At the end of this process, H
holds the groups whose representatives are closest to ¢ and
collectively have a total number of sequences ) . |H;| > k..
These sequences are the candidates from which we select the
k most similar sequences to the sample query.

We then select k sequences from the collective ). |H;|
sequences retrieved during the initial search for the represen-
tatives closest to @, as shown in Fig. 3. Note that the number
of sequences we search is slightly greater than k. as the final

Algorithm 1 Finding £ similar time series to query g.

Precondition: k& and k. are integers, () is the sample se-
quence, L is the length index of the representatives.
MAX-HEAP creates a max-heap. PEEK fetches the distance
value d* at the root of the heap. PUSH adds a tuple to the
heap, maintaining heap properties. POP pops and fetches
the root group of the heap. TRY-POP returns a new heap
with the root being popped without modifying the original
heap. GROUP-OF fetches all sequences in a group that
corresponds to a given representative.

1: function KONEX(k, k., @, L)

2: H < SEARCHREPRESENTATIVES(k, ke, @, L)
3: X < SEARCHEXTENDEDK(k, Q, H)

4: return X

5. function SEARCHREPRESENTATIVES(k, ke, @, L)
6 H <+ MAX-HEAP()

7 for [ < 1 to |L| do

8 for j < 1to |L;| do

9 d + DTW(Q, Ré-)

10: d* < PEEK(H)

11: if d < d* then

12: PUSH(H, (d, R%))

13: POP(H) UNTIL ), |TRY-POP(H );| < k.
14: return H

15: function SEARCHEXTENDEDK(k, @, H)

16: H, <+ MAX-HEAP()

17: for i < 1 to |H| do

18: R« H,;

19: G < GROUP-OF(R)

20: for g + 1 to |G| do

21: S+ Gy

22: d «— DTW(Q,S)

23: d* < PEEK(H,)

24: if d < d* then

25: PUSH(H;, (d, S))

26: POP(H,) UNTIL |H,| < k

27: return H > Return best k sequences in a vector.

group in H might have a greater than the minimum number of
sequences necessary to reach k.. To retrieve these sequences
we maintain a similar max-heap of sequences Hs; where the
sequence with the largest DT'W to @) is always at the root. We
insert new sequences into this heap using a similar optimized
technique to the one described above for representatives. The
only difference between this new heap Hg and the previous
H is that here we keep at most k sequences in Hg by popping
the root every time its size exceeds this limit.

B. Complexity of retrieving k similar sequences.

The complexity of finding the & most similar sequences to
a given sample can be broken down in three parts:
(1) the complexity of selecting the representatives of the
groups that contain the k. sequences.
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(2) the complexity of selecting k£ sequences from the collection
of sequences found in step 1.

(1) The complexity of retrieving the groups that contain
the k. most similar sequences is O(|G|log(|G’|)n?), where
G is the set of examined groups, and G’ is the set of groups
selected as being the most similar to the given sample and also
having a collective number of sequences greater than or equal
to k.. Here n? is the complexity of performing DTW pairwise
comparisons of sequences of length n. Practically |G’| is much
smaller than |G|, so the complexity can be approximated as
O(|G|n?).

(2) We define k' as >, |G"%|. We show later in our experi-
mental evaluation that in general, &’ is on the same order as
ke. The complexity of retrieving k sequences in G’ is then
O(K'log(k)n?). Again, because k is small, we approximate
this to be O(k'n?).

Based on these components, the overall complexity of re-
trieving k similar sequences is O((|G|+k')n?), with k' ~ k..
We show later in our experimental evaluation that this k.
amounts to a very small percentage of the total number of
sequences in the dataset to achieve 100% accuracy.

V. EXPERIMENTAL EVALUATION
A. Datasets and Experimental Methodology

We run experiments on eight datasets of varying sizes
from small to large from the well-known UCR Time Series
Classification Archive [12]. Each dataset has two disjoint sets:
a Test set and a Training set. We use the Training sets to select
our queries. We use the Test sets, which are larger, to run our
experiments on retrieving k-most-similar time series. To avoid
any confusion, we designate in this section the corresponding
Test sets as DATA and the Training sets as QUERY of each
dataset. For all datasets we first normalize all sequences X to
the range [0, 1] by using the formula #%
Alternative methods. We compare our system K-ONEX to
the benchmark brute force method BF that computes all
pairwise comparisons using DTW, and to the popular data

TABLE I
DATASETS AND SAMPLE QUERIES STATISTICS.

# of sequences # of samples  # of samples

Name in DATA from DATA  from QUERY
ItalyPowerDemand 30,084 40 40
ECG200 456,000 40 40
Synthetic Control 531,000 40 40
Gun-Point 1,676,250 25 25
Medicallmages 3,686,760 25 25
Face (All) 14,390,350 10 10
50Words 16,523,325 10 10
Wafer 70,852,824 10 10

reduction method PAA (Piecewise Aggregate Approximation)
[4] which finds an approximate solution by using an average
approximation. Similar to our system, we use a max heap to
maintain the top k results for both benchmark methods. All
three methods are implemented in C++11, and run on a system
with a 2.5 GHz Intel Core i7 CPU and 16 GB of memory. We
perform three classes of experiments:

1) k-Similarity Search. We measure the online response
time and accuracy for retrieving the top k-similar se-
quences to a given sample query averaged over multiple
runs for different datasets varying in size from small
to large. We perform “queries in the dataset” experi-
ments by choosing our sample queries from our newly
designated DATA set. We perform “queries not in the
dataset” experiments by choosing the sample queries
from our so-called QUERY set. We vary the number
of query sequences randomly chosen from each dataset.
We retrieve the top k-similar sequences in each DATA
set corresponding to specific datasets, preprocessed with
ST = 0.1. A summary of the datasets and number of
sample queries is shown in Table I.

2) Offline Computational Costs. We estimate the cost
of the offline construction of our similarity groups by
measuring the size and the preprocessing time of our
pregenerated information for varying similarity thresh-
olds across the selected datasets.

3) Visualization of compacted datasets allows analysts to
get a “similarity-centric panorama” of the distribution of
similar sequences in each dataset for varying similarity
thresholds.

B. Experimental Results

1) k-Similarity Search: Evaluating accuracy. The bench-
mark Brute Force is an exact solution, thus we measure the
accuracy of K-ONEX and PAA methods by comparing their
solutions to the ones returned by the Brute Force method using
the L, distance [16], defined as

IX =Y =)|X; - Vi

?

Here X is an ordered list of distance values between a
sample query and the top k similar sequences returned by
K-ONEX or PAA, while Y is the ordered list of distance
values between the same sample query and the top k similar



sequences returned by BF. The value of L; is 0 when there
is a perfect match between the results provided by BF and
the alternative comparison method, meaning 100% accuracy.
The higher the value of L, the lower is the accuracy of the
alternative method by comparison to BF.

We perform this experiment for varying numbers of desired
similar sequences, namely £k = 1, k = 9, k = 15. We vary
ke, defined in Def. 7, incrementally from the desired number
k to at most 5% of the total size of DATA, or until we obtain
100% accuracy for a sample query, whichever comes first.

IltalyPowerDemand ECG
002597 =======mmmmmm —— k=1(K-ONEX) | —— k=1 (K-ONEX)
0.0204 -=- k=1(PAA) 0.008 -=- k=1(PAA)
k = 9 (K-ONEX) k = 9 (K-ONEX)
0.015 k =9 (PAA) 0.006 k = 9 (PAA)

] —— k=15 (K-ONEX) | o —— k =15 (K-ONEX)
0.010 ——- k=15 (PAA) 0.004 ——- k=15 (PAA)
0.005 0.002
0.000 - - . e - 0.000 - . . -

0 250 500 750 1000 1250 1500 0 500 1000 1500 2000
ke ke
synthetic_control Gun-Point
"""""""" —— k=1 (K-ONEX) 0.006 —— k=1 (K-ONEX)
0.015 4 === k=1(PAA) —=- k=1 (PAA)
k = 9 (K-ONEX) k = 9 (K-ONEX)
k=9 (PAA) 0.004 k =9 (PAA)
00104 —— k=15 (K-ONEX) | o —— k=15 (K-ONEX)
—=- k=15 (PAA) —=- k=15 (PAA)
0.0054 ooo24)
e 0.000 : : : : :
0 250 500 750 1000 1250 1500 1750 0 1000 2000 3000 4000 5000
ke ke

Fig. 4. Average accuracy across first four datasets. The results are averaged
over all sample queries for each dataset.

Medicallmages 0.008 Face (All)
= k =1 (K-ONEX) == k =1 (K-ONEX)
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k =9 (K-ONEX) k =9 (K-ONEX)
k =9 (PAA) k =9 (PAA)
1 0.0041 ~ Kk = 15 (K-ONEX) = 0.004 A\ —— k =15 (K-ONEX)
—== k=15 (PAA) —=- k=15 (PAA)
0.002 0.002 +
0.000 0.000 ———— . TR
00 05 1.0 15 20 25 3.0 35 0.0 0.2 0.4 0.6 0.8 1.0
ke led ke led
50Words wafer
= k =1 (K-ONEX) 0.00150 4 =k =1 (K-ONEX)
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Fig. 5. Average accuracy across last four datasets. The results are averaged
over all sample queries for each dataset.

We plot in Fig. 4 and Fig. 5 the accuracy for K-ONEX and
PAA based on L; to compare the k-most-similar sequences
respectively returned by the two methods. Since BF is an exact
solution, it is not included in the plot. Each figure depicts the
values of L, for K-ONEX and PAA based on the number k..
We note that the value of L, for our system becomes quickly
smaller than that of PAA by setting k. to less than 0.5% of
the sequences in the dataset leading to 100% accuracy.

In Fig. 6, we show the average minimum percentage of the

total number of sequences that need to be explored (denoted
by k' in IV-B) to find the top 15 similar sequences with
100% accuracy. We use a log scale version in the inset plot to
magnify the fact that this percentage is too small to be noticed
on a linear scale. We show here that on average the number
of explored sequences amounts for up to 0.5% of the total
number of sequences to achieve the highest accuracy.

100 -

80

60 -

40 -

20 A

explored percentage of sequences (%)

Fig. 6. Percentage of explored sequences for k£ = 15 across datasets.

Table II indicates the percentage of sequences that need
to be explored in order to reach 100% accuracy for varying
k values desired by analysts. This percentage is very low,
as K-ONEX reaches the maximum accuracy by exploring on
average as low as 0.221% of the sequences in each dataset for
k =1 and respectively as high as 0.552% of the sequences in
each dataset for k = 15.

TABLE I
PERCENTAGE OF EXPLORED SEQUENCES VARYING K ACROSS DATASETS.

K 1 9 15

Min  0.0004%  0.002%  0.003%
Max 1.150% 2.583%  3.238%
Avg  0.221% 0.452%  0.552%

Evaluating response time. Fig. 7 depicts the average
response times for all three methods across the eight datasets.
We note that K-ONEX is by far faster than both benchmark
methods, with average response times 1874 times faster than
BF and 690 times faster than PAA.

In summary, these empirical results illustrate that our sys-
tem provides response times that are 2-3 orders of magnitude
faster than the benchmark methods while achieving perfect
accuracy by exploring on average less than 0.5% of the
sequences in each dataset.

2) Offline Computational Costs: Our goal is to find high-
quality compact representations of our datasets through sim-
ilarity groups that yield perfectly accurate results with very
low response time. For this, we evaluate the size of our
pregenerated data through the average size, compression rate
and construction time for our similarity groups. Since the other
two methods don’t involve a preprocessing phase, we display
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Fig. 7. Average response times across datasets.

only the preprocessing times and the size of the K-ONEX
generated groups for varying similarity thresholds.

Fig. 8 depicts the average preprocessing time (in the box
plot) and the average compression rate (in the line plot) for
the eight selected datasets. We define the compression rate as

# of group + avg. group sizey
0

100% —
’ total # of sequences

The preprocessing time decreases as ST increases. This is
because for larger thresholds, more sequences are placed into
the same similarity group, hence there will be a reduced
number of groups. On the other hand, the compression rate
increases for larger S7T's, it peaks at 0.4 and slowly decreases
after that. The reason for this trend is that for larger ST's,
there are fewer groups generated, but the average number of
sequences in each group increases.
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Fig. 8. Average construction times (in the box plot) and compression rates
across datasets (in the line plot) varying ST'.

Fig. 9 illustrates the average space needed for the grouping
structures. As ST increases, the average size decreases and
plateaus after ST = 0.4. This trend correlates with the
compression rate trend described above.
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Fig. 9. Average group sizes across datasets varying ST

In summary, our framework enables us to “compact”
datasets efficiently offline and benefit from the ability to find
any number of similar sequences for as many samples as
desired, with 100% accuracy and lightning speed response
times, comparable to the response times for retrieving one
single match.

3) Visualization of compacted datasets: We depict in Fig.
10 the “changes” in the similarity panorama of the prepro-
cessed datasets while varying ST. Each square corresponds
to a specific dataset and ST pair, and contains a heat map
consisting of multiple colored cells. Each cell represents a
similarity group as defined in Def. 6. The area of a cell is
proportional to the number of sequences in the group, while
the color is correlated to the length of the sequences in the
group. A cell with deeper blue represents a group of shorter-
length sequences, and a cell with deeper orange is a group of
longer-length sequences. For clarity of visualization, we only
plot here groups in decreasing order of the number of member
sequences until the total number of sequences in all plotted
groups makes up 25% of the dataset. It is noticeable that the
25% of the sequences in each dataset tend to be distributed
into more groups as we decrease ST and vice-versa.

Interestingly, this visualization also explains the underlying
reason for which ItalyPowerDemand and synthetic_control are
on the upper and lower extremes of the minimum explored
percentage of sequences, as shown in Fig. 6. Specifically, the
distribution of sequences in ItalyPowerDemand is not best for
the considered range of ST, i.e. there are a few large groups,
each containing a large number of all sequences in the dataset,
thus “deforming” the dataset structure. This characteristic does
not change significantly for varying ST's. At the other end of
the spectrum, synthetic_control appears much more dynamic
in the considered ST range, i.e. the number of groups changes
smoothly for different ST’s. For ST = 0.1 the groups of
synthetic_control are compact while the dataset structure is
still largely retained, therefore we achieve the highest accuracy
by exploring a very small number of sequences.



ST=01 ST=04 ST=05 ST=0.6

W
3
3
2
2
15
10
5

o
o
5
M
»
M
.
w0
- 35
x 30
»
2
H s
H »
B B
N 3
M %
B 25
i %
B i
H 0
4 s
:
20
» »
0 i
8
1 i
M 3
:
s H
4
“
M
0
M
o
3

ItalyPowerDemand

FEN
EN

3

0
&
S0
W
30
20
2 200
. 175
150
1235
100
75
50
25 25

“Similarity panorama” / Group heat maps for all datasets varying

EFECEECN
FFOEP

Fig. 10.
ST.

C. Case Study: using k similarity searches to help identify
heart conditions.

We explore a real dataset containing ECG shapes and other
information about patients suffering from arrhythmia [17],
[18] to show how finding similar sequences can help doctors
get new insights about these heart conditions. The MIT-
BIH Arrhythmia Database, created by Beth Israel Deaconess
Medical Center and MIT contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings, all of which were
obtained from 47 subjects studied by the BIH Arrhythmia
Laboratory between 1975 and 1979.

For our case study, we first select the first 500 points of
the sample heart rate shape of the record labeled 107 in the
dataset and use this sequence as our sample query. This male
patient (age 63) has a complete heart block condition in which
the impulse generated in the sinoatrial node in the atrium
of the heart does not propagate to the ventricles, displaying
multiform PVCs. We explore the dataset to find the sequences
that are most similar to our sample and belong to other
patients. As shown in Fig. 11, the most similar sequences
retrieved by K-ONEX belong to patients having records 200
and respectively 203. Both records indicate that the ECG
shapes of these two male patients, 63 and respectively 43
years old, show PVCs that are multiform, including ventric-
ular tachycardia, and ventricular trigeminy. Examining these
similar matches could help medical staff better understand the
similarities between the heart conditions of the three patients.

As a second example, we select a shorter sequence from
the sample heart rate of the record labeled 109. This record
belongs to a male patient of age 64, who has a first degree

= Record 107 (query)
= = Record 200 (1st)
== Record 203 (2nd)

Fig. 11. First example of case study on the arrhythmia dataset.

AV block and multiform PVCs. Fig. 12 shows that the most
similar sequences belong to patients with records 200, 203 and
201. These records respectively are of males, ages 64, 43, and
a respectively 68, all displaying multiform PVCs, ventricular
tachycardia, and ventricular trigeminy. Likewise, these similar
matches portray the similarities between the records, aiding
in better understanding the heart conditions of these patients.

In summary, medical staff could benefit from the ability to

- == Record 109 (query)
ord 200 (1st)
ord 203 (1) (2nd)
ord 203 (2) (3rd)
=== Record 201 (4th)

Fig. 12. Second example of case study on the arrhythmia dataset.

retrieve several similar matches to a given sequence. Such
similarities could help identify patterns preceding cardiac
arrests, atrial fibrillations or other conditions and contribute
to better diagnosis and treatment.

VI. RELATED WORK

Euclidean Distance is one of the most frequently used
distances [8], [11] due to its time and space efficiency,
although it shows great limitations in comparing sequences of
different lengths and with temporal misalignments [19], [4].
By contrast, DTW allows non-linear alignments between two
time series to compare sequences that are similar, but locally
out of phase [5]. Its popularity for mining time series similarity
is only dampened by its high computational complexity. To
reduce the time response of DTW, indexing techniques [8],
[20], and other optimizations like early abandoning of DTW
[5], cascading lower bounds to prune unpromising candidates,
and reversing the query/data role by creating an envelope
around the query sequence instead of the data [5] have been
developed. We leverage some these techniques in our system,
while also noting that simply extending their use to search
for more than one best match in the aforementioned systems
would not be efficient, as it would involve re-running the entire



search and leading to much increased response times.

Some systems [21] reduce the response time for the k
nearest time series by only exploring whole sequences in a
distributed environment. Others [11], [22] proposed efficient
k-NN search algorithms, but they too focus only on whole
time series matching, thus they would not scale very well to
subsequence matching.

Closer to our work, [23] proposed ranked subsequence
matching under time warping, finding top-k subsequences
most similar to a query sequence by introducing the notion
of the minimum-distance matching-window pair. Unlike us,
they focus on deferred group subsequence retrieval to avoid
excessive random disk 7/Os and bad buffer utilization.

Range searches and nearest neighbor searches [7] are in-
creasingly important in mining time series data, as we showed
in our motivating examples. Reducing the cardinality of data
by exploring meaningful sequences as representatives instead
of the raw data [24] is a popular approach. Methods like the
nearest centroid classifier [25] and k-means clustering replace
a set of neighbors with their centroid. Conceptually similar,
[26] and [27] reduce the data cardinality by grouping similar
time series. K-ONEX is built on a general idea similar to [27]
of finding representatives for groups of similar objects but
we expand here the strategy of combining two well-known
distances [13] to find the £ most similar sequences.

VII. CONCLUSION

We introduce K-ONEX, a framework for finding k-most-
similar time series by interleaving ED and DTW to produce
guaranteed results with response times that are 2-3 orders
of magnitude faster than benchmark methods. Our approach
provides analysts with the ability to retrieve any desire d
number k of similar sequences to a given sample with 100%
accuracy within almost the same time that it would take to
only retrieve one best match. K-ONEX renders more practical
the retrieval of similar sequences in large time series datasets
by allowing analysts to control the amount of data explored,
balancing the trade-off between accuracy and latency.
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